US009400703B2

a2 United States Patent 10) Patent No.: US 9,400,703 B2
Ladd et al. (45) Date of Patent: *Jul. 26, 2016
(54) METHOD AND SYSTEM FOR (56) References Cited
TRANSFORMING INPUT DATA STREAMS
U.S. PATENT DOCUMENTS
(71) Applicant: Open Text S.A., Luxembourg (LU) 5299304 A 3/1994 Williarms of al.
. . 5,524,250 A 6/1996 Chesson
(72) Inventors: Dennis D. Ladd, Acton, MA Us); 5.713.014 A 1/1998 Durflinger et al.
Anders Hermansson, Askim (SE) 5911,776 A 6/1999 Guck
5,970,490 A 10/1999 Morgenstern
(73) Assignee: Open Text S.A., Luxembourg (LU) (Continued)
(*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS
patent is extended or adjusted under 35
U.S.C. 154(b) by O days. WO WO 2006/041340 4/2006
z]l:l;l E?tent is subject to a terminal dis- OTHER PUBLICATIONS
Office Action for U.S. Appl. No. 10/184,430, mailed Sep. 21, 2005,
(21) Appl. No.: 14/638,700 12 pgs.
(22) Filed: Mar 4, 2015 (Continued)
65 Prior Publication Dat: .
(65) rior Fublication Data Primary Examiner — Krista Zele
US 2015/0178139 Al Jun. 25, 2015 Assistant Examiner — James Forman
Related U.S. Avplication Dat (74) Attorney, Agent, or Firm — Sprinkle IP Law Group
elated U.S. Application Data
(63) Continuation of application No. 13/745,096, filed on 57 ABSTRACT
Jan. 18, 2013, which is a continuation of application 7
No. 13/092,771, filed on Apr. 22, 2011, now Pat. No. A system and method for processing an input data stream in a
8,380,830, which is a continuation of application No. first data format of a plurality of first data formats to an output
Continued data stream in a second data format of a plurality of second
(Continued) data formats. A plurality of input connector modules receive
(51) Int.Cl respective input data streams and at least one input queue
G0;$F }5 /177 (2006.01) stores the received input data streams. A plurality of job
’ threads is operatively connected to the at least one input
GO6F 9/54 (2006.01) : . .
queue, each job thread formatting a stored input data stream
HO04L 29/06 (2006.01)
(52) US.Cl to produce an output data stream. At least one output queue
S stores the output data streams from the plurality of job
CPC ..o GOG6F 9/546 (2013.01); GOGF 9/542 threads. A plurality of output connector modules is opera-
(2013.01); HO4L 29/06 (2013.01); HO4L 69/04 .
2013.01): HO4L 6908 (2013.01 tively connected to the at least one output queue, the output
. . (01); (0D connector modules supplying respective output data streams.
(58) Field of Classification Search

CPC HO4L 69/04; HO4L 69/08; GOGF 9/542
See application file for complete search history.

21 Claims, 8 Drawing Sheets

100
SYSTEM FOR TRANSFORMING DATA STREAMS
106 NPUT S s | 124 T
gn| CONNECTOR L] " THREAD
100 INPUT 118 OUTPUT |, | ouTeuT
QUEUE QUEUE CONNECTOR |—n,
108 INPUT 12 o | 1% 132 = 138
CONNECTOR | ™™ THREAD —
102 gt
INPUT R JoB —" QUTPUT
CONNECTOR || bl THREAD %”LEJJ | CONNECTOR |y
104 weur [T 120 P> 138
110 128 | 14
e —
11z JoB oUTPUT
REQUEST] THREAD —“_ﬁ——’> CONNECTOR f=>
I> FORMATTED DATA = Y 140
e RAW DATA

US 9,400,703 B2
Page 2

(56)

Related U.S. Application Data

12/573,352, filed on Oct. 5, 2009, now abandoned,
which is a continuation of application No. 11/583,369,
filed on Oct. 19, 2006, now abandoned, which is a
continuation of application No. 10/184,430, filed on
Jun. 28, 2002, now Pat. No. 7,127,520.

5,995,996
6,012,098
6,151,608
6,172,988
6,236,997
6,243,107

6,263,332
6,275,536
6,324,568
6,336,124
6,336,139
6,397,232
6,484,178
6,587,972
6,623,529
6,668,254
6,748,020
6,782,379
6,810,429
6,816,871
6,877,156
7,043,687
7,054,952
7,055,096
7,127,520
7,143,087
7,213,249
7,216,163
7,225,256
7,257,600
7,284,235
7,302,678
7,308,399
7,478,402

References Cited

U.S. PATENT DOCUMENTS

A

A

A
Bl
Bl
BL*

Bl
Bl
Bl
Bl
BL*
Bl
Bl
Bl
Bl
B2
Bl
B2
Bl
B2
B2
B2
Bl
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2

11/1999
1/2000
11/2000
1/2001
5/2001
6/2001

7/2001
8/2001
11/2001
1/2002
1/2002
5/2002
11/2002
7/2003
9/2003
12/2003
6/2004
8/2004
10/2004
11/2004
4/2005
5/2006
5/2006
5/2006
10/2006
11/2006
5/2007
5/2007
5/2007
8/2007
10/2007
11/2007
12/2007
1/2009

Venable
Bayeh et al.
Abrams
Tiernan et al.
Bodamer et al.
Valtin GO6F 15/8053

345/505

Nasr et al.

Chen et al.

Diec

Alam et al.
Feridun etal. 709/224
Cheng-Hung et al.
Bence, Ir. et al.
Baird et al.

Lakritz

Matson et al.
Eifrig et al.

Lee

Walsh et al.

Lee

Osborne et al.
Knauss et al.
Schwerdtfeger et al.
Namioka

Ladd et al.
Fairweather

Loo et al.

Sinn

Villavicencio
Matson et al.
Nachmanson et al.
Bohlmann et al.
Fallen-Bailey et al.
Christensen et al.

8,380,830 B2 2/2013 Ladd et al.

8,914,809 Bl 12/2014 Cohen

9,047,146 B2 6/2015 Ladd et al.

9,237,120 B2 1/2016 Cohen
2001/0047369 Al 11/2001 Aizikowitz et al.
2001/0056362 Al* 12/2001 Hanaganetal. 705/7
2002/0083205 Al* 6/2002 Leonetal. ... 709/247
2002/0165975 Al 11/2002 Abbott
2003/0023336 Al 1/2003 Kreidler et al.
2003/0065623 Al 4/2003 Corniel et al.
2003/0085902 Al 5/2003 Vogelaar et al.
2005/0160086 Al 7/2005 Haraguchi et al.
2006/0095511 Al 5/2006 Munarriz et al.
2006/0233108 Al 10/2006 Krishnan
2007/0204058 Al 8/2007 Ladd et al.
2009/0064175 Al 3/2009 Taylor et al.
2010/0023642 Al 1/2010 Ladd et al.
2013/0132974 Al 5/2013 Ladd et al.
2015/0046555 Al 2/2015 Cohen

OTHER PUBLICATIONS

Office Action for U.S. Appl. No. 11/583,369, mailed Apr. 3, 2009, 8
I())gfii'ce Action for U.S. Appl. No. 12/573,352, mailed Sep. 13,2010, 9
I())gfii'ce Action forU.S. Appl. No. 13/092,771, mailed Jul. 20,2011, 12
I())gfii'ce Action forU.S. Appl. No. 13/092,771, mailed Jan. 4, 2012, 13
I())gfii'ce Action for U.S. Appl. No. 13/745,096, mailed Sep. 30, 2013,
é)(i‘é)cisAction for U.S. Appl. No. 13/454,492, mailed Nov. 26, 2013,

18 pgs.
Office Action for U.S. Appl. No. 13/745,096, mailed Jan. 15,2014, 15

pgs.

Office Action for U.S. Appl. No. 13/745,096, mailed Jul. 25,2014, 16
pgs.

Notice of Allowance for U.S. Appl. No. 13/745,096, mailed Dec. 1,
2014, 4 pgs.

Notice of Allowance for U.S. Appl. No. 14/52,261, mailed Apr. 20,
2015, 8 pgs.

Notice of Allowance for U.S. Appl. No. 14/526,261, mailed Aug. 26,
2015, 2 pgs.

* cited by examiner

US 9,400,703 B2

Sheet 1 of 8

Jul. 26, 2016

U.S. Patent

I "DI4
- —— e, YIVO MYY st
avi y S ek | YLY0 QILIYINOS <
HOLO3NNOD OYauHL |
1NdLN0 qor T A53N03Y =

ww.,m T oLl

WH.W.W. w AAAAAAAAA mnmna AAAAAAAAAAAAAAAAA %m B im.mzmnmzm .WQ w«

< wo103mm00 CYTHHL | =1 woLoannoo [
Ndino q0r] 1NN
e

s N o g, -

8L g 0L
— RS vt | [woLoawnoo [T
el K 76l 97t g0rf Zil LI 801

<7 w0103NN00 EEY INEAND

LAdING Tl inding a1l | LNdNl 001
S QVEHHL | &1 OLOINNOD [T
= yzy |8 — LN 901

SINYIRILS YLV DNINHOISNYYHL H04 WILSAS
004

U.S. Patent Jul. 26, 2016 Sheet 2 of 8 US 9,400,703 B2
DESIGN PHASE
EVENT MAPPING PROCESS TOOL
TOOL TOOL 596
220 222 - 232
PROCESSING
RULES
224
, PROVIDERSCHEMA |
TRANSFORMATION
Ev;m MODEL PROCESS MODEL
218
PARSING 212 = 234
MODEL
MAPPING COMMUNICATION
210 RULES RULES
214 218
I , RUNTIMEPHASE |
EVENT TRANSFORMATION
AGENT ENGINE | PROCESS ENGINE
228 240 242
& &
. OUTPUT
DATA K. 200 236 STREAM
STREAM |
SOURCE mmfifﬁggm RECEVING
DEVICE MODEL DEVICE
202 230 204

FIG. 2

U.S. Patent Jul. 26, 2016 Sheet 3 of 8 US 9,400,703 B2

302
PROJECT TOOL
PROCESS
ouT
EVENT IN 210
INPUT 308 “"“"' QUTPUT
PAGEOUT
|| aueue DAGEIN PAeET QUEUE
312 STREAMIN 314
LN KMLOUT
SAMPLE FILE SMSOUT
322 MAILOUT
&
¥ ¥ A ¥
BUSINESS PLATFORM MESSAGE
APPLICATION CONFIGURATION CONFIGURATION
318 304 308
I I SERVER { 300
INPUT DATA PARSING MODEL
316 324
= OUTPUT
X RUNTIME MODEL | oAt
326 320

FI1G. 3

U.S. Patent Jul. 26, 2016 Sheet 4 of 8 US 9,400,703 B2

MAIN PARSING
.} THREAD o MODEL
400 404
402
! 3
INPUT THREAD |
INPUT DATA THREAD JOR
STREAM AGENT
406 MANAGER
LA 408
&
¥
EVENT
416
k4
MESSAGE
412
¥
MESSAGE
410
¥
OUTPUT PIPELINE
414
OUTPUT
DATA
STREAM
¥
OUTRUT DEVICE
418

FIG. 4

U.S. Patent

INPUT
DATA
STREAM

Jul. 26, 2016 Sheet 5 of 8 US 9,400,703 B2
MAIN PARSING
| THREAD . MODEL
500 502 504
p,
¥ ¥
INPUT THREAD !
PHYSICAL THREAD JOB
A weur | PHTER AGENT MANAGER
506 508 §10 514
J:Y
V
EVENT
512
! ¥
MESSAGE MESSAGE
516 518
i
1 OUTPUT PIPELINE
PHYSICAL
PROCESS | | SORT DRIVER | ourpuT
520 524 526 528
A QUTPUT
222 DATA
RECEIVING STREAM
DEVICE

530

FIG. 5

U.S. Patent Jul. 26, 2016 Sheet 6 of 8 US 9,400,703 B2

PARSING
MODEL
600 612
N
A}
INPUT INPUT THREAD ¥
DATA
PHYSICAL THREAD JOB
STREAM . INPUT . FILTER N AGENT MANAGER
602 e e 604
E
¥ ¥
EVENT MESSAGE
608 L
QUTPUT
z PIPELINE
MESSAGE 5186

FIG. 6

U.S. Patent

Jul. 26, 2016 Sheet 7 of 8 US 9,400,703 B2
JOB BEGIN
COLLECT BEGIN
EVENT 1 EVENT
COLLECT
RETRIEVE RETRIEVE PHASE
EVENT DATA EVENT DATA
700
COLLECT BEGIN
EVENT 4 EVENT n
PRE-PROCESS
PRE-PROCESS PRE-PROCESS PHASE
EVENT EVENT 702
OUTPUT BEGIN
EVENT 1 EVENT n
PROCESS
EXECUTE EXECUTE PHASE
EVENT EVENT 204
OUTPUT END
JOB END

TiME

FIG. 7

U.S. Patent Jul. 26, 2016 Sheet 8 of 8 US 9,400,703 B2

PARSING
MODEL
NPUT
oATA | INPUTTHREAD |
STREAM THREAD JOB
AGENT | ianaGER
-
¥
EVENT
! ¥
MESSAGE MESSAGE
I
I OUTPUT PIPELINE OUTPUT
PROCESS | | SORT| | DRIVER PHYSICAL | | grort | RECEIVING
L, L, | ouTRUT .| DEVICE
82 | 8% 808 804 810

/’ﬁ ;
800 FIG. 8

US 9,400,703 B2

1
METHOD AND SYSTEM FOR
TRANSFORMING INPUT DATA STREAMS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/745,096, filed on Jan. 18, 2013, and entitled
“METHOD AND SYSTEM FOR TRANSFORMING
INPUT DATA STREAMS,” which is a continuation of U.S.
patent application Ser. No. 13/092,771, filed on Apr. 22,2011,
and entitled “METHOD AND SYSTEM FOR TRANS-
FORMING INPUT DATA STREAMS,” which is a continu-
ation of U.S. patent application Ser. No. 12/573,352, filed on
Oct. 5, 2009, abandoned, and entitled “METHOD AND SYS-
TEM FOR TRANSFORMING INPUT DATA STREAMS,”
which is a continuation of U.S. patent application Ser. No.
11/583,369, filed on Oct. 19, 2006, abandoned, and entitled
“METHOD AND SYSTEM FOR TRANSFORMING
INPUT DATA STREAMS”, which is a continuation of U.S.
patent application Ser. No. 10/184,430, filed on Jun. 28, 2002,
entitled “METHOD AND SYSTEM FOR TRANSFORM-
ING INPUT DATA STREAMS,” now U.S. Pat. No. 7,127,
520, all of which are incorporated herein by reference in their
entirety.

BACKGROUND

The field of the invention relates to data transformation,
and more particularly, to apparatus and method for transform-
ing an input data stream in a first data format of a plurality of
first data formats to an output data stream in a second data
format of a plurality of second data formats.

Businesses communication has become increasingly com-
plex. The demands of business trends such as Customer Rela-
tionship Management and Supply Chain Management com-
bined with emerging communication technologies, which
allow business partners to share information instantly, are
mainly responsible for this communication evolution. The
number of business partners and the means with which they
collaborate (using e-mail, fax, public internet and mobile
devices) are steadily increasing. Adding to this complexity, a
growing number of customers and suppliers require that the
communication be tailored to their specific needs. In short,
businesses today need to provide communication processes
that are automated and personalized. Meeting this challenge
requires a new understanding of business communications in
the age of the Internet. Thus, there is a need for better control
of the complexity of business communication.

BRIEF DESCRIPTION OF THE DRAWINGS

The features of the invention, which are believed to be
novel, are set forth with particularity in the appended claims.
The invention may best be understood by reference to the
following description taken in conjunction with the accom-
panying drawings, in the several figures of which like refer-
ence numerals identify like elements, and in which:

FIG. 1 is a general block diagram of one embodiment of a
system for transforming an input data stream in a first data
format of a plurality of first data formats to an output data
stream in a second data format of a plurality of second data
formats;

FIG. 2 is amore detailed block diagram of one embodiment
of the system;

FIG. 3 is a further block diagram of an implementation of
one embodiment of the system;

25

35

40

45

50

55

65

2

FIG. 4 is a block diagram of one embodiment of a portion
of the system;

FIG. 5 is a block diagram of another embodiment of a
portion of the system;

FIG. 6 is a block diagram of yet another embodiment of a
portion of the system;

FIG. 71is adiagram of run-time phases of an embodiment of
the system; and

FIG. 8 is block diagram of a further embodiment of a
portion of the system.

DETAILED DESCRIPTION

While the invention is susceptible of embodiments in vari-
ous forms, there is shown in the drawings and will hereinafter
be described some exemplary and non-limiting embodi-
ments, with the understanding that the present disclosure is to
be considered an exemplification of the invention and is not
intended to limit the invention to the specific embodiments
illustrated.

One embodiment of a system for transforming an input
data stream in a first data format of a plurality of first data
formats to an output data stream in a second data format ofa
plurality of second data formats is depicted in FIG. 1. A
plurality of input connector modules 100, 102, 104 receive
respective input data streams 106, 108, 110. A plurality of
input queues 112, 114 store the received input data streams
106, 108, 110. A plurality of job threads 116, 118, 120, 122
are operatively connected to respective input queues 112,
114. Each job thread (116, 118, 120, 122) in parallel with at
least one other job thread (116, 118, 120, 122) formatting a
stored input data stream to produce an output data stream
(124, 126, 128, 130). A plurality of output queues 132, 134
respectively store the output data streams 124, 126, 128, 130
from the plurality of job threads 116, 118, 120, 122. A plu-
rality of output connector modules 136, 138, 140 are opera-
tively connected to the output queues 132, 134, the output
connector modules 136,138, 140 supplying respective output
data streams (124, 126, 128, 130). It is to be understood that
the novel system may have any number of input connector
modules 100, 102, 104, input queues 112, 114, job threads
116, 118, 120, 122, output queues 132, 134, and output con-
nector modules 136, 138, 140. Also, there is no restriction on
how they may be shared and FIG. 1 is only one example of a
system configuration. Furthermore, a job thread may be
directly connected to an input connector and/or to an output
connector (see job thread 122 and output connector 140 in
FIG. 1, for example).

FIG. 2 depicts an embodiment of the system in more detail.
An input data stream 200 from a source device 202 or appli-
cation (provider) is evaluated and manipulated based on the
data content, transmission protocol and data format require-
ments of the receiving device 204 or application (consumer).
Input can originate from a number of sources, refined and
then multiplexed to multiple output channels. Thus, one-to-
many and many-to-many processing from provider to con-
sumer is possible.

The input is processed according to communication rules
216, which define how the content is transformed, delivered
and presented to the consumer. The communication rules 216
are applied based on matching the input from the source
device 202 to the requirements of the receiving device 204 of
the output data stream 208.

At runtime, the input data stream 200 is described in an
event parsing model 210 and a corresponding transformation
model 212 upon which the data transformation is based. The
data stream is manipulated based on mapping rules 214 in the

US 9,400,703 B2

3

transformation model 212, communication rules 216 in the
process model 218 and the content and structure of the input
event.

The event parsing model 210, transformation model 212,
and process model 218 are statically defined in a design phase
and determine the global framework for the communication
process between the provider (source device 202) and the
consumer (receiving device 204). The input event parsing
model 210 is defined using an event tool 220, which defines
the sequences and patterns to detect in the input data stream
200. The transformation model 212 can correspond to the
event parsing model 210 or can consist of a combination of
events derived from the data stream or from additional map-
ping rules defined at design time in a mapping tool 222. The
processing rules 224 for the presentation and delivery to the
output data stream is defined in the process tool 226.

External communication rules for the processing and
delivery of the information personalized for the consumer is
derived from a matching consumer communication model
230 at run time. The consumer communication model 230 is
dynamic and need not be predefined before the information is
transformed or processed at runtime. The consumer commu-
nication model 230 is applied to the processing model 218 to
determine the actual communication rules.

The event tool 220, the mapping tool 222, and the process
tool 226 occur in the design phase 232. The event parsing
model 210, the transformation model 212, and the process
model 218 form the provider schema 234. In the runtime
phase 236 the input data stream 200 is received by an event
agent 228, which parses the input data stream 200. A trans-
formation engine 240 effects the actual transformation of the
data from one format to another format. A process engine 242
then applies the communication rules 216 and sends the out-
put data stream 208 to the receiving device 204.

The multi-threading system increases the performance and
provides support for parallel job execution. This system
architecture also offers better scalability for multi-processor
systems. All threads are connected to queues and/or connec-
tors, enabling extremely flexible configuration. Several job
threads can serve one or several queues and several input
connectors can use one or several queues and job threads.

In one embodiment job threads pick up data from the queue
in the same order as it was stored. Jobs that arrive via input
connectors are stored in input queues, and job threads pick up
the jobs and execute them independently of other job threads.
When an input connector has written a job to a queue, that
connector is immediately ready to receive more data; it does
not have to wait for the system to process previous jobs. After
processing, jobs are stored in output queues, from where
output connectors can pick them up and pass them on to their
final destination. Thus, the use of queuing is one embodiment
of the system.

The following is a more detailed description of the opera-
tion of the system and method for transforming an input data
stream in a first data format of a plurality of first data formats
to an output data stream in a second data format of a plurality
of second data formats.

In the embodiment depicted in FIG. 3, the server 300 is the
“main engine” and is configured using a project tool 302. All
configurations are defined in the project tool 302 and then
exported in two text files 304, 306 for platform configuration
and message configuration to the server 300. The server 300
reads these files 304, 306 at startup and creates and connects
events 308, processes 310 and queues 312, 314 according to
the instructions in the files 304, 306. This embodiment
focuses on how the server 300 builds its pipelines and how it
processes data 316 from a business application 318 and pro-

10

15

20

25

30

35

40

45

50

55

60

65

4

vides output data 320. The system is applicable to other
applications, which need to reformat data streams. During an
initiation phase the project tool 302 uses a sample file 322
from the business application 318. As will be explained
below, the server 300 has a paring model 324 and a runtime
model 326.

The system is multi-threading, but for the purpose of
describing the operation of the system, the threading model is
considered to consist of a main thread 400 and input threads,
such as input thread 402 (see FIG. 4). The main thread 400 is
responsible for initiation. It parses all command line options,
all driver files and all export files from the project tool. Based
on this information it creates the parsing model 404. Finally it
creates one input thread 402 for each input queue, starts these
threads and then becomes passive. It remains passive until it
gets a signal that a user wants to terminate the server. When
this occurs, it stops all input threads, de-allocates all
resources and exits. Each input thread listens to a physical
port from which it can receive data and execute any jobs found
on this port.

The parsing model 404 is created as a read-only object by
the main thread 400 at startup and cannot be changed. The
parsing model 404 contains all the information specified by
the user in the project tool. This information is exported to the
server and stored in the parsing model 404.

The parsing model 404 communicates with the objects in
the runtime model and provides information such as: agent
information, which is information about which agent 406 a
thread job manager 408 shall use; variable information,
which is information about which variables to create and
instantiate; message structure, which is information about
how to structure a message (such as messages 410, 412);
output action, which is how the process communicates with
the parsing model 404 to receive instructions about which
actions to take (These actions may include sending output to
the output pipeline 414, running a script or carrying out
sorting, for example); sorting information, which is informa-
tion about whether sorting should be done or not; output
pipeline objects information, which is information regarding
how the thread job manager 408 creates the output pipeline
414 and makes sure that the required objects are inserted into
the pipeline 414 based on information in the parsing model
404; events and processes information, which is information
regarding which events 416 to detect in the data stream and
which processes to launch when an event 416 is detected.

The runtime model contains components that are created at
start-up and dynamic components that are created during
runtime. The main thread 500 creates the parsing model 502
and all input threads, such as input thread 504. These com-
ponents cannot be changed during the session. All other com-
ponents, events, messages and output pipeline objects, are
dynamically created at runtime.

The following is a step-by-step description of an example
of the flow in one embodiment of the runtime model.

1. When the server starts, the main thread 500 creates the
parsing model and all input threads 504 by using infor-
mation in the files exported from the project tool. When
this is done, the main thread becomes idle and listens
only to a server shutdown command. When this occurs,
the main thread 500 is responsible for closing all input
threads 504.

2. Input data (from a business application, for example) is
received by a physical input 506.

3. A filter 508 in the input thread 504 ensures that only
relevant data is passed to an agent 510.

US 9,400,703 B2

5

4. When the agent 510 receives the data, the collect-phase
begins. In this phase the agent 510 reads the entire input
file and then carries out the following steps for each
event 512 in the job;

4.1. The event 512 is identified and the data is retrieved
from it.

4.2. A field list is created for the event 512.

4.3. The retrieved script for the event 512 is run. Once
these steps have been carried out for each event 512,
sorting (if any) is performed using variables set in the
events 512 and the retrieved scripts.

5. The collect phase is now complete.

6. When the thread job manager 514 receives permission
from the global thread manager, the first event 512 is
created by the thread job manager 514. Information
about how to create the event 512 is retrieved from the
parsing model 502.

7. The agent 510 fills the event with fields.

8. The event 512 creates a message 516 based on the
event’s field list and the information in the parsing
model 502. A message tree is built using fields, blocks
and variables. The message 516 is then passed on to the
thread job manager 514.

9. The thread job manager 514 runs “script before event”.

10. The thread job manager 514 creates a process 520 by
using information in the parsing model 502 and message
518.

11. The thread job manager 514 runs “script before pro-
cess”.

12. A check is made to determine if this process should be
skipped. A skip can be forced by a rule attached to the
process 520 or by executing a script function “skip () in
the “script before process”.

13. If no skip is detected, the thread job manager 514
creates the output pipeline 522 for the process 520. This
is based on the information in the parsing model 502.
The process 520 is then executed according to the
instructions in the parsing model 502 and in the data
flow. The output pipeline 522 may contain objects, such
as sort/archive 524, driver 526, physical output 528. The
output pipeline 522 may be operatively connected to a
receiving device 530.

14. When the process 520 is finished, “script after process™
is executed.

15. Steps 12 to 14 are repeated for all processes 520 defined
for the event 512.

16. When all processes 520 are created the thread job
manager 514 runs “script after event”.

17. Steps 9 to 16 are performed for each event 512.

In another embodiment depicted in FIG. 6 an input pipeline
(input thread 600) consists of a pipeline of objects that are
connected through one data channel and one message chan-
nel. The pipeline 600 always starts with a physical input
object 602 and ends with a thread job manager 604. Other
objects can be inserted between the physical input object 602
and the thread job manager 604. These objects can perform
various operations with the data as long as they send it to the
next object in the pipeline. Normally these objects are filters
606 that remove unwanted data from the data channel.

Each input thread 600 consists of only one input pipeline.
Its only task is to find incoming jobs arriving at the physical
input object 602 and send jobs down to the different objects in
the pipeline. Eventually, it reaches the thread job manager
604 that processes a job.

The physical input object 602 is a physical port through
which incoming data is received. It is also the start of the input
thread data, pipeline. A physical port may be one of the

5

10

20

25

30

35

40

45

50

55

60

6

following types: serial (receives data directly from a serial
port); directory scan (scans a file system directory for files
that match a file search criterion); device (listens directly to a
hardware device, e.g., a parallel port); standard input (listens
to standard input); TCP/IP sockets (listens to a socket for
incoming data); named pipe; (listens: to a named pipe); inter-
nal (data is sent from a server output queue in the same
system); netware bindery (acts as a NetWare printer); netware
NDS (acts as a NetWare NDS printer).

The physical input object 602 starts to listen for incoming
data. As soon as the physical input object 602 detects an
incoming job the physical input object 602 sends the job
down the input thread data pipeline byte by byte as raw data.
How ports are listened to depend on the type of port.

Ifa filter has been chosen for the input queue in project tool,
an input filter object 606 is inserted in the input thread data
pipeline 600 after the physical input object 602. If several
filters have been chosen, several filter objects are inserted in
serial in the pipeline 600.

A filter’s task is to remove unwanted sequences or to con-
vert sequences in the incoming data stream. An example of
removing sequences is a filter that removes PCL escape codes
and just sends the actual PCL. document data to the next object
in the pipeline. An example of converting is a filter that
receives compressed (zipped) data and uncompresses (un-
zips) it before sending it to the next object.

The script language makes it possible at runtime to decide
what output to produce and to which queue to send it. The
script language is an event driven procedural language.

The input thread data pipeline of the input thread 600
always ends with a thread job manager 604. Each thread job
manager 604 contains an agent 610. The thread job manager
604 is responsible for detecting events 608 and launching and
controlling events 608 and processes.

An agent 610 is the interface between the thread job man-
ager 604 and the input thread data pipeline and receives the
incoming data. It is responsible for detecting events and
extracting fields in the raw data input stream. There may be
several different agents 610; each specialized for a specific
type of input. For example, one agent for record based input
from mainframes, another agent for XML data. The agent to
use is specified in the project tool. The thread job manager
604 finds this information in the parsing model 612. In one
embodiment the agent 610 receives data as one page and
breaks it down into a field list.

The agent 610, when a job arrives and when events are
found in the job, notifies the thread job manager 604. The
thread job manager’s main task is to control the execution of
the job (i.e., the events, scripts, sorting and processes of the
job). When executing the job, the thread job manager 604
creates events and processes and makes sure that they are
executed in the right order. When processes are executed, the
thread job manager 604 is also responsible for setting up the
output pipeline 616 for the process.

In general, the main task for the process is to produce
output and send it to an output pipeline. The data may be
received as a message containing blocks that contain fields. In
this embodiment the execution is block driven, meaning that
the process identifies all blocks in the message and then
communicates with the parsing model to get instructions
about which actions to take for each block, for example, to
send output to the output pipeline, to run a script or to perform
sorting. The type of output created differs depending on the
type of process used.

The following are examples of types of processes. The
process “PageOUT produces a page layout. This is by far the
most complicated process and is used for creating documents

US 9,400,703 B2

7

for printing, faxing, PDF, web etc. The process “StreamOUT”
produces flat field and record based text files. The process
“XMLOUT” produces XML output. This is a special version
of “StreamOUT”. The process “Mail OUT produces e-mail
and can also attach the result of another process to the e-mail.
The process “SMSOUT” produces SMS messages that can be
sent to mobile phones.

In another embodiment output sent to the output pipeline is
sent as meta records containing instructions for the device
drivers. An example of a meta record is as follows: output the
text “, Inc.” at position x=346 and y=345 using font Arial size
10. When fields and variables are used in the output, the
process retrieves the current field or variable value. This
means that a reference to a field or variable is never included
in meta records. Instead, the value of the field or variable is
sent. To the output pipeline objects, it is transparent if it is
static text or text from the incoming data that is being deliv-
ered. The device drivers convert Meta records to device spe-
cific output. The device drivers are part of the output pipeline.

In thread job execution the thread job manager splits all
requests that receive and process into jobs. Each job consists
of'one or more events together with all processes belonging to
these events. The processes can send their output to one or
more output pipelines. Each of these pipelines produce one
output entity for the complete job. For example if 30 invoices
are received at the input pipeline and a “PageOUT” process
produces 30 invoices and sends the invoices to a spooler
system, these 30 invoices being sent as one print job to the
spooler.

The default scope of a job is that each input file will result
in one job. However, the incoming file may be split the incom-
ing file into several smaller jobs. The smallest possible job is
when the job consists of only one event. The thread job
manager (actually the thread job manager agent) is respon-
sible for deciding when a job starts and ends. Normally this is
straight forward since one incoming request to a physical
input object will result in one job.

There can be many reasons for dividing a large job into
smaller jobs. For example, there may be one entry in the
spooler system for each process, for example for each invoice.
In a further embodiment some settings may be sent to the
output queue. This is usually performed at the beginning of
the job, for example downloading overlay files to a printer.

One example of an implementation of the system occurs
when an external application that is required to process an
output job sends this job as one file to the system. When the
agent receives the job and recognizes it as something that
should trigger an event, the job begins. This sends signals to
the thread job manager for the job to begin and for the collect
phase 700 to begin (see FIG. 7).

The agent will now start to scan the input for fields and new
events. All fields found are stored in a list that is associated
with the current event. If] in the parsing model, the field is
designated to create a variable, this is done at this stage. If a
new event is found it will be added to a list of found events,
and any fields found after this will be associated with this
event. This process continues until a list of all events, with all
fields, has been created. This signals an end of the collect
phase 700 to the thread job manager. The Collect phase is
necessary for creating this list, which in turn is used to sort the
incoming events. Information is stored in the parsing model
about whether or not sorting should be carried out.

The thread job manager will now pre-process all events and
processes belonging to the job in a pre-process phase 702.
During the pre-process phase 702 the whole job is executed,
but without sending anything to the output pipeline. The
pre-process phase 702 is used, for example, to calculate the

10

15

20

25

30

35

40

45

50

55

60

65

8

number of pages and where page breaks occur and to deter-
mine which resources are to be used. A resource may, for
example, be an overlay that should be sent to a printer. It is
also possible to cancel the job, that is undo everything thathas
been done in the job and skip the rest of the input. This can be
done conditionally, based on input field values, in scripts.
Event and process execution is carried out in, the pre-process
phase 702 in the following order:

1 The first event in the event list is pre-processed first, then

all the processes for this event.

2 The next event in the event list, together with its pro-

cesses, is preprocessed.

3 This continues until all the events in the list have been

pre-processed.

Note that this is the order after events have been sorted.
Before and after each event and process a script is run. In this
script, the process can conditionally be skipped.

Now the thread job manager has stored all information
needed from the pre-process phase 702 and can execute the
events and processes in a process phase 704. First, it performs
a rollback on everything. For example, variables are restored
to their values before the pre-process phase 702 and ODBC
operations that have been executed in a transaction are rolled-
back. Next it sends any resources (for example, overlays) that
were found during the pre-process phase 702 to the output
pipeline. The events and processes are executed in the process
phase 704 in the same order as in the pre-process phase 702.
The difference is that this time the output is actually sent to the
output pipeline. After the last process is executed, the job is
complete. The thread job manager releases all resources that
were temporarily assigned.

In FIG. 8 the output pipeline 800 consists of a pipeline of
objects that are connected through one data channel and one
message channel. The pipeline 800 always starts with a pro-
cess 802 and ends with a physical output object 804. Between
the process 802 and the physical output object 804 other
objects may be inserted. These objects may be used to per-
form various operations with the data and then pass the data
on to the next object in the pipeline 800. Examples of opera-
tions that may be performed in various embodiments are
sorting, or splitting the pipeline into two branches (such as
sorting object 806). Also one of the objects may be a device
driver 808 that converts the meta data into formatted data.

The physical output object 804 always points to a physical
destination, such as receiving device 810. This can, for
example, be a printer or an e-mail server. The physical output
object 804 is responsible for the actual delivery of the output
data to its final destination.

Different objects may be included in the pipeline 800
depending on information in the parsing model. The thread
job manager creates the output pipeline 800 and ensures that
the required objects are inserted in the pipeline 800. The
thread job manager also connects the pipeline 800 to the
process 802.

In one embodiment the following rules may apply to all
output pipelines in the system: Each physical output object
corresponds to one, and only one, queue as defined in the
parsing model. There may only be one pipeline for each
physical output object. The physical output object for a pipe-
line is always the same throughout an entire job. The pipeline
is always connected to one process at a time. These rules
imply that output from different processes in the same job,
that use the same physical output object, will be kept together,
that is, delivered as one unit to the final destination, for
example a spooler system.

In the data channel, the process sends meta records down
the pipeline. If there is a device driver in the pipeline, it

US 9,400,703 B2

9

reformats the meta record according to the format expected
by the destination. Eventually the information reaches the
physical output object, which sends it to a physical destina-
tion, for example, a spooler system or a file. The message
channel is used by the thread job manager to send messages to
notify the objects in the pipeline when certain events occur.

Output processors or objects may be inserted anywhere in
the pipeline. These processors may change the data that is sent
through the data channel. It is also possible to use a pipeline
without any output processors, that is a pipeline with just a
device driver and a physical output object.

Thus in general terms the present system (and the corre-
sponding method) is for transforming an input data stream in
a first data format of a plurality of first data formats to an
output data stream in a second data format of a plurality of
second data formats. A plurality of input connector modules
receive respective input data streams and at least one input
queue stores the received input data streams. A plurality of job
threads is operatively connected to the at least one input
queue, each job thread, in parallel with at least one other job
thread, formatting a stored input data stream to produce an
output data stream. At least one output queue respectively
stores the output data streams from the plurality of job
threads. A plurality of output connector modules is opera-
tively connected to the at least one output queue, the output
connector modules supplying respective output data streams.

In an embodiment each of the job threads has at least one
event agent associated with at least one parsing model, the
event agent having an input port that receives an input data
stream, and having an output port. At least one transformation
engine is associated with at least one transformation model,
the transformation engine having an input port operatively
connected to the output port of the event agent. At least one
process engine is associated with at least one process model,
the process engine having an input port operatively connected
to the output port of the transformation engine, and having an
output port for supplying an output data stream. The transfor-
mation model has mapping rules for manipulating the input
data stream, and the process model has communication rules
for formatting the output data stream.

In another embodiment the at least one input queue may be
shared between the input connector modules and the job
threads, and the at least one output queue may be shared
between the job threads and the output connectors. The job
threads may receive input data streams in the order in which
the input data streams are stored in the at least one input
queue. In general, the job threads receive input data streams
from the at least one input queue, format the input data
streams into output data streams, and store the output data
streams in the at least one output queue, independent of one
another and in parallel.

It is to be understood, of course, that the invention in
various embodiments can be implemented in hardware, soft-
ware, or in combinations of hardware and software.

The invention is not limited to the particular details of the
apparatus and method depicted, and other modifications and
applications are contemplated. Certain other changes may be
made in the above-described apparatus and method without
departing from the true spirit and scope of the invention
herein involved. It is intended, therefore, that the subject
matter in the above depiction shall be interpreted as illustra-
tive and not illuminating sense.

What is claimed is:

1. A system for transforming input data streams compris-
ing:

a physical input connector;

a physical output connector;

20

30

40

45

65

10

a processing system coupled to the physical input connec-
tor and the physical output connector, the processing
system including a computer program product to:
read an electronic input data stream received at the

physical input connector, wherein input data in the
input data stream is of a first format; and
in a same thread:
identify one or more events based on a detected pattern
or a detected sequence in the input data stream;

create a message for each identified event, the message
containing data from the event;

create output data of a second format from the message,
the output data containing the data from the message,
wherein the second format is a different format from
the first format; and

provide an output data stream via the physical output
connector, the output data stream comprising the out-
put data.
2. The system of claim 1, wherein the output data of the
second format is created by transforming the data of the
message based on one or more communication rules, each
communication rule defining how the data is to be trans-
formed.
3. The system of claim 2, wherein at least one communi-
cationrule is selected based on a destination of the output data
stream.
4. The system of claim 1, wherein the thread services one or
more corresponding input queues.
5. The system of claim 4, wherein the input data stream is
associated with one or more jobs on one or more of the
corresponding input queues.
6. The system of claim 1, wherein the message has one or
more fields populated from the data of the event.
7. The system of claim 1, wherein the one or more events
are ordered for execution.
8. The system of claim 1 wherein the output data stream is
a page layout, a record based text file, eXtensible Markup
Language (XML), an email, a text message, or a meta record.
9. A computer program product comprising a non-transi-
tory computer readable medium storing a set of computer
readable instructions, the set of computer readable instruc-
tions comprising instructions executable to:
read an electronic input data stream of file data received
over a network at a physical input, wherein input data in
the input data stream is of a first format; and
in a same thread:
identify one or more events based on a detected pattern
or a detected sequence in the input data stream;

create a message for each identified event, the message
containing data from the event;

create output data of a second format from the message,
the output data containing the data from the message,
wherein the second format is a different format from
the first format; and

provide an output data stream via a physical output
connector, the output data stream comprising the out-
put data.

10. The computer program product of claim 9, wherein the
output data of the second format is created by transforming
the data of the message based on one or more communication
rules, each communication rule defining how the data is to be
transformed.

11. The computer program product of claim 10, wherein at
least one communication rule is selected based on a destina-
tion of the output data stream.

12. The computer program product of claim 9, wherein the
thread services one or more corresponding input queues.

US 9,400,703 B2

11

13. The computer program product of claim 12, wherein
the input data stream is associated with one or more jobs on
one or more of the corresponding input queues.

14. The computer program product of claim 9, wherein the
message has one or more fields populated from the data of the
event.

15. The computer program product of claim 9, wherein the
one or more events are ordered for execution.

16. The computer program product of claim 9, wherein the
output data stream is a page layout, a record based text file,
eXtensible Markup Language (XML), an email, a text mes-
sage, or a meta record.

17. A method for processing a data stream in a network
environment, comprising:

reading an electronic input data stream of file data received

over a network at a physical input, wherein input data in
the input data stream is of a first format; and

in a same thread:

identifying one or more events based on a detected pat-
tern or a detected sequence in the input data stream;

creating a message for each identified event, the mes-
sage containing data from the event;

10

15

20

12

creating output data of a second format from the mes-
sage, the output data containing the data from the
message, wherein the second format is a different
format from the first format; and

providing an output data stream via a physical output
connector, the output data stream comprising the out-
put data.

18. The method of claim 17, wherein the output data of the
second format is created by transforming the data of the
message based on one or more communication rules, each
communication rule defining how the data is to be trans-
formed.

19. The method of claim 18, wherein at least one commu-
nication rule is selected based on a destination of the output
data stream.

20. The method of claim 17, wherein the thread services
one or more corresponding input queues.

21. The method of claim 20, wherein the input data stream
is associated with one or more jobs on one or more of the
corresponding input queues.

#* #* #* #* #*

